Low Carbon Vehicles -

The role of hydrogen

24th February 2005 H-Valley Launch

Greg Archer LowCVP Director

Low Carbon Vehicle Partnership

Accelerating a sustainable shift to low carbon vehicles and fuels in the UK

Stimulating opportunities for UK businesses

LowCVP Activities

- □ Action by members
 - Biofuels accreditation
 - Car label
- □ Advice to Government
 - Bus programme
 - Centre of Excellence
- Research
 - Car buying behaviour
 - R&D agenda for CoE
 - Testing of commercial vehicles
- Policy development
 - Future of voluntary agreements
 - RTFO feasibility study
- Programme advice
 - TransportEnergy programme

Voluntary car labelling scheme

Voluntary Scheme to be launched in summer 2005 – ahead of EU scheme

□ Collaboration between LowCVP, UK Government and SMMT

Bands linked to UK Vehicle Exercise Duty CO2 categories

Consistent with European Energy Efficiency labels

Fuel Economy	Ford Fiesta 1.4 TDC ZETEC
CO ₂ emission figure (g/km)	
<100 A	
101-120 B	B 117 g/km
121-150 C	
151-165 D	
166-185 E	
186+ F	
Tuel cost (estimated) for 12,000 miles fuel cost figure indicates to the consumer a guide fuel price for comparison purposes. This figure is alculated by using the combined drive cycle (town centre and motorway) and average fuel price. Re- alculated annually, the current cost per litre is as follows – petrol 76p, diesel 78p and LPG 38p /CA May 2004).	£662
/ED for 12 months ehicle excise duty (VED) or road tax varies according to the CO2 emissions and fuel type of the vehicle	£85
Environmental Information	

Make/Model Fuel type	Ford Fiesta 1.4 TDCi ZETEC Diesel		Engine capacity (cc): 1399 Transmission type: 5 speed manual	
Fuel Consur	nption:	I.		1
Drive cycle		Litres/100km		Мрд
Urban		5.4		52.3
Extra-urban		3.8		74.3
Combined		4.4		64.2

Carbon dioxide emissions (g/km): 117g/km

Important note: Some specifications of this make/model may have lower CO2 emissions than this. Check with your dealer.

Centre of Excellence for Low Carbon and Fuel Cell Technologies

□ To be launched in Spring 2005 at Loughborough University

□ Create stronger linkages between academia, supply chain and OEMs

Partnership developed Supply Chain database will form a key element of Knowledge Transfer Activities

Research priorities identified through Partnership R&D Working Group

Holywell Campus, University of Loughborough

Climate projections indicate a global temperature rise of 1.5 - 6°C by 2100^{1 -} with potentially profound implications

http://www.stabilisation2005.com/day1/Schneider.pdf

http://www.stabilisation2005.com/33_Richard_Wood.pdf

Wales in 2050

Heavier winter rainfall – increased flooding in low-lying areas

□ Summer droughts and water shortages (possibly by 2025)

Coastal areas prone to increased flooding during storm surges – with impacts for tourism

□Alpine plants in decline in upland areas – including the Snowdon lily

□ Forests could be affected by increased storm damage and new pests such as the spruce aphid

Forecasting the future, changing climate, changing behaviour, EST, 2004

Reducing road transport emissions will require a combination of measures

- Reduced vehicle emissions
- Low carbon / alternative fuels
- Improved driver behaviour
- Reduced vehicle use
- Better freight distribution

Hydrogen represents a possible solution post 2030

The possible transition to hydrogen requires addressing several challenges

- □ Higher costs per unit of energy
 - Oil prices rises may eliminate this
- Development of refuelling infrastructure
- □ Supply of a range of affordable vehicles
- Renewable production volumes particularly if used for internal combustion
- Practical storage
- □ High cost of fuel cells

□ Step wise transition is most likely

Honda FCX – Hydrogen fuel cell

Hydrogen Mini - IC

There is a chicken & egg dilemma regarding provision of vehicles and refuelling infrastructure

http://www.chevrontexaco.com/about/energy_opportunities/docs/img_hydrogen_energy_ad.pdf

H Fuel Cell Buses are being trialled in London

Daimler Chrysler Citaro buses

□ 3 buses in London – 30 in 10 cities across Europe

Demonstrating, testing and examining –

- Technology
- Infrastructure
- Safety
- Reliability
- Operating experience in different conditions
- Life-cycle costs
- Environmental benefits / impacts
- Public acceptability

□ c£800k per bus compared to c£150k for conventional buses

Pathway to low carbon vehicles

Ricardo 2003, Carbon to Hydrogen Roadmaps for Passenger Cars http://www.dft.gov.uk/stellent/groups/dft_roads/documents/page/dft_roads_026217.hcsp

Vehicles employing Stop-Start and Mild Hybrid technologies are now available

Honda Civic – mild hybrid

Citroen C3 – stop start technology

Toyota and Ford market full hybrid vehicles

Toyota Prius

Ford Escape

BMW are unconvinced by hybrid development and advocate using solar energy to generate renewable hydrogen

BMW's H2R concept car

H745 – Hydrogen IC

Supply of affordable fuel cell vehicles is someway off – although concept vehicles have been produced by a range of manufacturers

GM Sequel

Nissan XTrail FCV

There are multiple options for renewable hydrogen fuel chains – all present challenges

6 H chains offer competitive and significant CO2 savings

Biomass (possibly with carbon capture)

Renewable electricity

Nuclear electricity

Natural gas conversion (ideally with carbon capture)

Coal (with carbon capture)

Novel technologies

Conclusions

- □ Hydrogen represents a promising future fuel for road transport
- Supply of renewable hydrogen is essential to achieve significant CO2 savings compared to alternative fuels
- Promising energy chains for renewable hydrogen exist but further development is needed in all of these
- Improvements in vehicle efficiency (hybrids and fuel cells) are needed in parallel to reduce demand for renewable hydrogen
- The costs of fuel cell vehicles and installing hydrogen infrastructure are major constraints as are viable on vehicle storage systems
- Depot operations will be the principal market for hydrogen vehicles initially
- Widespread introduction of H powered vehicles is unlikely until at least 2030 – and is not guaranteed if developments are more rapid in other energy carriers, such as batteries

Finally ... hydrogen vehicles are not necessarily sustainable!

But even Hummer's can be green!

